

Simplify Substance Profiling with "Human-on-a-Chip"

Funktionsintegration in Kunststoffe
21. November 2018

Isabel Rütschle

www.tissuse.com

TissUse at a Glance

- Spin-off from Technical University of Berlin, founded in 2010
- Solid 3rd party funding, revenue-based financial independence
- 20 employees + 30 associated researchers
- 8 patent families, 96 patents

Traditional Drug Testing Still Leads to Dramatic Failure Rates in Clinical Studies

Challenges

85 % failure rates of NCE

from pre-clinic into clinic (46 % due to toxicity, 35 % due to lack of efficacy)

US\$ 223 m* and precious time lost (*per failed NCE)

25–100 million vertebrate animals per year used (USA)

Translation
animal model to
human only 8 %
(oncology)

Animal model: systemic but NOT human;

2D & 3D cell culture: human but NOT systemic

Our solution

Predict substance performance by targeted Multi-Organ-Chip (MOC) testing

Our Solution Approach: *Testing the Patient Without the Patient*

We develop automated on-chip testing of human organ models to achieve highly relevant and accurate results:

- Equip chips with indication-relevant organ models to measure safety/efficacy on whole organism before exposure
- Eventually, equip chip with subunits of patient's own relevant diseased organs to predict personalized treatment outcome

Multi-Organ-(Human)-on-a-Chip: human AND systemic

The Multi-Organ-Chip (MOC)

Features:

- Size of a standard microscope slide
- Compatible with life tissue imaging
- On-chip micro-pump enabling pulsatile flow
- Long term cultivation of iPSCs, primary cells, 3D tissues and cell lines

2-Organ-Chip

based barrier models

(96-/12-/24-well format)

COMSOL Multiphysics® 5.2.

The 4-Organ-ADMET-Chip

PBPK – compliant ADME profiling

An autologous 4-Organ-ADMET-Chip

physiology-based pharmacokinetic model

PBPK-compliant Chip Design

 ${\bf ADMET-Absorption-Distribution-Metabolism-Excretion-Toxicity}$

Human-on-a-chip (HOC)

Musculoskeletal, Circulatory system, Nervous system, Integumentary system, Immune system Respiratory system, Digestive system, Urinary system,

Reproductive system, Endocrine system

Video Human-on-a-chip (HOC)

The HOC concept

Human-on-a-Chip

Examples of Established Multi-Organ-Chip Assays

Skin – Liver Wagner et al. (2013) Maschmeyer et al. (2015)

Skin – 3D Tumor Hübner et al. (2018)

Intestine – Liver Maschmeyer et al. (2015)

Bone marrow Sieber et al. (2017)

Liver – Neuro Materne et al. (2015)

Intestine – Liver – Skin – Kidney Maschmeyer et al. (2015)

Liver – Pancreas

Bauer et al. (2017)

Intestine – Liver – Neuro – Kidney Ramme et al. (2018) (in review)

Immunocompetent Skin (biopsies) and hair follicles *Atac et al. (2013)*

Optional: add vasculature Schimek et al. (2013) Hasenberg et al. (2015)

Liver – Lung

Examples of Industrial Adoption

Industry	Partner	Organ model	Assay format	Context of use
Pharma safety	AstraZeneca	Bone-marrow	8 weeks repeated exposure	Lineage specific bone marrow toxicity
Consumer products industry	undisclosed	Lung – Liver	5 days single exposure	Hazard potential
Biotech	undisclosed	Intestine – Muscle	12 days repeated exposure	Feed additives
Chemicals & cosmetics	Beiersdorf	Skin – Liver	5–14 days repeated exposure	i.v. versus topical MoA risk assessment
Pharma safety	undisclosed	Intestine – Liver	14 days repeated exposure	Oral absorption and liver metabolism
Pharma efficacy	AstraZeneca 2	Liver – Pancreas	14 days repeated exposure	Diabetes drugs
Pharma "safficacy"	BAYER E R	Skin – Tumor	5 days repeated exposure	Anti-tumor drugs
Pharma efficacy	transgene	Pancreas – Vasculature - Tumor	10 days repeated exposure	Anti-tumor drugs

TissUse bone marrow on-a-chip

Experimental setup of the liver-islet co-culture

On-chip cross-talk between pancreatic islet microtissues and liver spheroids

Dotted lines indicate physiological postprandial glucose range (3.9–7.8 mM)

Bauer et al. (2017) Sci Rep.

✓ Liver-Islet crosstalk can be shown by an insulin mediated glucose utilization and a glucose level dependent insulin secretion.

Vascularizing Two-Organ-Chips

Calcium AM live imaging of human dermal microvascular endothelial cells (HDMEC´s) along the entire two-organ circuit

Schimek et al. (2013) LabChip

Outlook: Our Upcoming MOC-Robot Will Further Increase Efficiency and Cost-Effectiveness of Our End-to-End-Solution

- Automated chip operation (24 chips per robot)
- Integrated cold storage for different liquids
- Automatic media exchange, liquid sampling, microscopy, etc.
- Robot facility with costumized number of robots from 2019

TissUse GmbH
Oudenarder Str. 16
13347 Berlin, Germany

Phone: +49 (0)30 5130 264 00

E-Mail: isabel.ruetschle@tissuse.com